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There is considerable public, regulatory, and scientific concern regarding human exposure to
endocrine-disrupting chemicals, which include compounds that directly modulate steroid hormone
receptor pathways (estrogens, antiestrogens, androgens, antiandrogens) and aryl hydrocarbon
receptor (AhR) agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related
compounds. Based on quantitative structure-activity relationships for both AhR and estrogen
receptor (ER) agonists, the relative potency (RP) of individual compounds relative to a standard
(e.g., TCDD and 17f-estradiol) have been determined for several receptor-mediated responses.

Therefore, the TCDD or estrogenic equivalent (TEQ or EQ, respectively) of a mixture is defined as

TEQ= £[ TI x RPi or EQ= E EiE] x RP,, where T, and Ej are concentrations of individual AhR or ER
agonists in any mixture. This approach for risk assessment of endocrine-disrupting mixtures
assumes that for each endocrine response pathway, the effects of individual compounds are

essentially additive. This paper will critically examine the utility of the TEQ/EQ approach for risk
assessment, the validity of the assumptions used for this approach, and the problems associated
with comparing low dose exposures to xeno and natural (dietary) endocrine disruptors. Environ
Health Perspect 1 06(Suppl 4):1051-1058 (1998). http.//ehpnetl.niehs.nih.gov/docs/1998/Suppl-4/
1051-1058safe/abstract.html
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Introduction
The potential adverse impacts of chemicals
are dependent on a number of factors,
including levels and duration of exposure,
chemical potency, timing of exposure,
mechanism of action, and interactions
between chemicals in a mixture. Hazard and
risk assessment of chemicals carried out by
regulatory agencies have focused primarily
on the toxicities of individual compounds,
whereas wildlife and humans are exposed to
complex mixtures of man-made compounds
that act through multiple pathways.
Moreover, the human diet contains many
natural products and cooking-derived com-
pounds that exhibit many of the same toxic,
mutagenic, and carcinogenic properties of

industrial-derived contaminants (1-3). In
most cases, humans are exposed to signifi-
cantly higher levels of natural products than
the man-made chemical toxicants that act
through the same pathway. For example,
early development of the Ames test for
detecting bacterial mutagens generated con-
siderable scientific, regulatory, and public
concern over human exposure to the many
different industrial chemicals that exhibited
mutagenic activity in one or more of the
highly sensitive bacterial tester strains (4,5).
Subsequent studies demonstrated that some
of the most mutagenic compounds in the
human diet are not industrial-derived
contaminants, but natural compounds that

include a complex series of heterocyclic
aromatic amines derived from cooking pro-
teinaceous foods (e.g., fish, beef, poultry)
(6-8). Thus, the public health concern
regarding human exposure to mutagens
must take into account intake and potency
of both natural and man-made chemicals
that act through various pathways.

Hazard and risk assessment of human
exposures to chemicals must also take into
account scenarios where chemical interac-
tions may significantly influence toxic out-
comes. For example, despite relatively high
levels of human exposure to natural car-
cinogens in the diet, there are several other
classes of natural products (e.g., flavones,
antioxidants) that inhibit P450-mediated
metabolic activation or induce detoxifying
enzymes, and these compounds may pro-
vide protection against natural or man-
made toxins (9-11). In contrast, workplace
or environmental exposures to nontoxic
levels of organochlorine solvents such as
chloroform may lead to hepatotoxic effects
if there is concurrent exposure to ketones
because of their nonadditive (synergistic)
interactions (12,13). Thus, chemical inter-
actions are important determinants in eval-
uating the potential hazards and risks of
exposure to chemical mixtures. This manu-
script will outline the development, valida-
tion, and pitfalls associated with the toxic
equivalency factor (TEF) approach for risk
assessment of complex mixtures.

Toxic Equivalency Factors:
An Approach for Hazard
and Risk Assessment
The TEF approach has been extensively
used for hazard assessment of different
classes of toxic chemical mixtures. The over-
all toxicity or toxic equivalents (TEQs) of a
mixture are defined by the concentration of
individual compounds (CQ) in a mixture
times their relative potencies or TEFs.

TEQ= E [ Ci]X TEFi
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The assumptions implicit in utilization
of the TEF approach indude: the individual
compounds all act through the same bio-
logic or toxic pathway; the effects of individ-
ual chemicals in a mixture are essentially
additive at submaximal levels of exposure;
the dose-response curves for different con-
geners should be parallel; and the organ-
otropic manifestations of all congeners must
be identical over the relevant range of doses
(14,15). TEFi values are either derived for a
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species-specific response or are a composite
value obtained from TEFs for several
responses, and individual TEFs are usually
determined relative to the activity of a
standard or reference compound. The TEF
approach has been applied to different
structural classes of compounds, includ-
ing polynuclear aromatic hydrocarbons
(PAHs), halogenated aromatic hydrocar-
bons (HAHs), and endocrine disruptors.
The utility and problems associated with
TEFs and TEQs will be discussed.

Toxic Equivalency Factor
Approach for Polynuclear
Aromatic Hydrocarbons
Individual PAHs such as benzo[a]pyrene
(B[a]P) have been extensively investigated as
carcinogens and as ligands for the aryl
hydrocarbon receptor (AhR). The carcino-
genic activity of PAHs is dependent on the
oxidative metabolic activation of these com-
pounds into genotoxic metabolites, which
subsequently interact with DNA to initiate
carcinogenesis. The carcinogenic potencies
of individual PAHs have been determined
in different bioassays and TEF values pro-
posed for various PAHs are summarized in
Table 1 (16-19). The utility of this
approach was demonstrated in studies using
relatively simple reconstituted PAH mix-
tures in rodent carcinogenicity models
(20,21). However, Warshawsky and co-
workers (22) recently demonstrated that
there are a number of important factors that
can significantly modulate the genotoxicity
ofPAH mixtures, indcluding the presence or
absence of B[a]P, the dose, and the solvents
used in carcinogen administration. This
variability of carcinogenic potency suggests

that the TEF approach for PAHs may not
be appropriate for some animal models.
Studies in several laboratories have investi-
gated the biochemical, toxic, and genotoxic
activities of manufactured gas plant (MGP)
residues, which contain complex mixtures of
PAHs (23-27). Comparisons of the effects
of MGP PAHs with B[a]P or a reconsti-
tuted mixture of PAH hydrocarbons sug-
gested that the mixture induced synergistic
responses or that other factors were impor-
tant. Based on results of recent studies
(24,25,28), the high activity/genotoxicity of
the MGP-PAH mixture may be due to
unidentified alkyl PAHs. For example, a
reconstituted mixture of the 17 major PAHs
in an MGP sample (24) did not induce
liver tumor formation in the B6C3F1 male
juvenile mouse model at a dose of 1071
mg/kg; in contrast, the field-derived sample
induced a 45% incidence of liver tumors at
the same dose (25,28). These results
demonstrate that applications of TEFs for
PAHs require a more detailed knowledge of
the complete composition of these mixtures
and the TEFs of all active components.
Thus, the approach may be useful for
defined PAH mixtures containing only par-
ent hydrocarbons; however, for mixtures
containing alkyl PAHs, the TEF approach is
not valid because of the minimal data avail-
able on the identities and relative potencies
of these compounds.
Toxic Equivalency Factor
Approach for Halogenated
Aromatic Hydrocarbons
Polychlorinated dibenzo-p-dioxins (PCDDs),
dibenzofurans (PCDFs), polychlorinated
naphthalenes (PCNs), and polychlorinated

Table 1. Different toxic equivalency factor values proposed for individual polycyclic aromatic hydrocarbon
congeners.

Compound Thorslund et al. (18) Chu and Chen (17) U.S. EPA (19) Nisbet and LaGoy (16)
Benzo[a]pyrene 1 1 1 1
Dibenzo[a,h]anthracene 1.1 0.69 1 5
Benzo[a]anthracene 0.145 0.013 0.1 0.1
Benzo[bjfluoranthene 0.140 0.08 0.1 0.1
Benzo[k1fluoranthene 0.066 0.004 0.01 0.1
Idendo(1,2,3-c,d)pyrene 0.232 0.017 0.1 0.1
Acenaphthene ND ND 0 0.001
Acenaphthylene ND ND 0 0.001
Anthracene 0.32 ND 0 0.01
Benzo[g,h,i]perylene 0.022 ND 0 0.01
Chrysene 0.0044 0.001 0.001 0.01
Fluoranthene ND ND 0 0.001
Fluorene ND ND 0 0.001
2-Methyinaphthalene ND ND 0 0.001
Naphthalene ND ND 0 0.001
Phenanthrene ND ND 0 0.001
Pyrene 0.081 ND 0 0.001

Abbreviations: ND, not determined; U.S. EPA, U.S. Environmental Protection Agency.

biphenyls (PCBs) are HAHs that are indus-
trial compounds or industrial combustion
by-products (Figure 1). These compounds
are chemically and environmentally stable
and have been identified in almost every
component of global ecosystems, induding
fish and wildlife and human serum, adipose
tissue, and milk (29,30). HAHs are also
routinely detected as residues in diverse food
products, and the diet is the major source of
human exposure to HAHs (30,32).

The mechanism of action of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and
related HAHs has been extensively investi-
gated and the results support a pathway
that involves initial ligand (HAH) binding
to the intracellular AhR, which is widely
expressed in mammalian tissues (33). The
mechanism of AhR-mediated CYPlAI
induction has been extensively investi-
gated; the results show that the AhR is a
ligand-induced nudear transcription factor
in which transactivation is associated with
interaction of the heterodimeric nuclear
AhR complex with dioxin-responsive ele-
ments located in the 5'-promoter region of
the Ah-responsive gene (34,35). The
mechanisms of AhR-mediated toxicity are

PCDD

PCDF

cil cl,

PCN

PCBs

TCDD

Figure 1. Halogenated aromatic hydrocarbons.
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unknown; however, it is assumed that
many of the responses are because of
altered gene expression.

Hazard and risk assessment of PCDDs
and PCDFs initially focused on quantita-
tion ofTCDD in various environmental
samples; however, with development of
high-resolution analytical techniques cou-
pled with studies on structure-toxicity rela-
tionships, it was apparent that the bulk of
the toxicity induced by most PCDD/PCDF
mixtures is not due to TCDD alone. Based
on the well-characterized structure-activity
relationships established for PCDDs and
PCDFs (36-39), a TEF approach has been
developed for these compounds:

TEQ = E [PCDF,] x TEFi and
z [PCDDj] x TEFi

where [PCDDi] and [PCDF] represent the
concentrations of the individual com-
pounds (40-46). Individual TEFs have
been assigned to all the 2,3,7,8-substituted
PCDD and PCDF congeners (Table 2)
because these are the compounds that have

Table 2. Toxic equivalency factors for the 2,3,7,8-
substituted PCDDs and PCDFs and selected polychlori-
nated biphenyl congeners.

Congener TEF

PCDDs
2,3,7,8-TCDD 1.0
1,2,3,7,8-PentaCDD 0.5
1,2,3,4,7,8-HexaCDD 0.1
1,2,3,6,7,8-HexaCDD 0.1
1,2,3,7,8,9-HexaCDD 0.1
1,2,3,4,6,7,8-HeptaCDD 0.01
OCDD 0.001

PCDFs
2,3,7,8-TCDF 0.1
2,3,4,7,8-PentaCDF 0.5
1,2,3,7,8-PentaCDF 0.1/0.05
1,2,3,4,7,8-HexaCDF 0.1
2,3,4,6,7,8-HexaCDF 0.1
1,2,3,6,7,8-HexaCDF 0.1
1,2,3,7,8,9-HexaCDF 0.1
1,2,3,4,6,7,8-HeptaCDF 0.01
1,2,3,4,7,8,9-HeptaCDF 0.01
OCDF 0.001

PCBs
3,3',4,4',5-PentaCB 0.1
3,3',4,4',5,5'-HexaCB 0.01
3,3',4,4'-TetraCB 0.0005
2,3,3',4,4'-PentaCB 0.0001
2,3,3',4,4',5-HexaCB 0.0005
2,3',4,4',5-PentaCB 0.0001
2,3,3',4,4',5'-HexaCB 0.0005
2',3,4,4',5-PentaCB 0.0001
2,3,4,4',5-PentaCB 0.0005

Data from Ahlborg et al. (45,67).

primarily been detected in environmental
samples and are among the most potent
congeners. The TEF for each 2,3,7,8-sub-
stituted congener compared to TCDD is
variable among cell types, laboratory ani-
mal species, target organs, and responses.
Research in our laboratory has extensively
investigated the immunotoxicity-derived
TEFs for several HAHs in mouse models
(47-50); TEFs for inhibition of the
plaque-forming cell response to trinitro-
phenyl-lipopolysaccharide by 2,3,4,7,8-
pentachlorodibenzofuran in C57BL/6,
DBA/2, and B6C3F1 mice varied by
approximately 7-fold, and in some assays
this congener was more potent than
TCDD. Over a broader spectrum of
responses, TEFs for individual PCDD/
PCDF congeners can vary by over 100-fold.
The broad range ofTEF values for a specific
congener compromises the use of a single
TEF for this congener and may over- or
underestimate the calculated TEQ for a
mixture. Variable TEFs are due to many
factors including differential pharmacoki-
netics and metabolism of HAHs in various
in vivo and in vitro bioassays.

Validation of the TEF approach can be
investigated by determining the in vitro or
in vivo toxicities of reconstituted mixtures
of PCDDs and PCDFs and comparing
their observed versus calculated potencies.
Eadon and co-workers (51) utilized a
PCDF/PCDD mixture (primarily PCDFs)
resulting from a PCB fire and compared
the calculated versus observed effects for
several end points in the guinea pig,
including decreased body and thymus
weights, increased serum triglycerides,
decreased serum alanine aminotrasferase
levels, and formation of hepatocellular
cytoplasmic inclusion bodies. Their results
showed that the experimentally observed
TEQs per kilogram ranged from 2 to 21
ppm depending on end point; the calcu-
lated value using a set of provisional TEFs
was 14.5 ppm. These results demonstrated
a good correspondence between the
observed and calculated values. Other
reports using multiple end points in both
in vivo and in vitro models demonstrated
that for several PCDD/PCDF mixtures,
there is a reasonable correspondence
between calculated and experimentally
determined TEQs (52-60). For more
complex mixtures containing compounds
that act through multiple pathways to give
both similar and different toxic responses,
the TEF/TEQ approach may not be appro-
priate. Moreover, it should also be noted
that even for PCDDs/PCDFs, there is some

ci cl

3,3',4,4'-tetraCB

cl ci

Cl cI

c
3,3',4,4',5-pentaCB

cl cl

Cl cl

c c3 5
3,3',4,4',5,'-hexaCB

Figure 2. Coplanar (non-ortho) polychlorinated
biphenyl congeners.

evidence that TEFs do not always predict
relative congener potency in different rat
strains (61).

Several studies have also demonstrated
that the coplanar PCBs (i.e., 3,3',4,4'-
tetra-, 3,3',4,4',5-penta, and 3,3',4,4',5,5'-
hexachlorobiphenyl [CB]) (Figure 2) bind
to the AhR and induce a broad spectrum
of AhR-mediated biochemical and toxic
responses (62,63). Tanabe and co-workers
(64,65) first utilized CYPlAI induction-
derived TEFs (66) for coplanar PCBs and
their mono-ortho-substituted analogs to
show that these compounds contributed
substantially to the TEQs of diverse indus-
trial/environmental extracts. Provisional
TEFs have been proposed for coplanar and
mono-ortho coplanar PCBs and these val-
ues are used routinely for determining
total TEQs (i.e., PCDDs, PCDFs, and
PCBs) in various extracts (67). The rela-
tive TEQ contributions of different classes'
of HAHs are variable; however, there are
numerous examples that demonstrate that
PCB TEQs contribute > 50% of total
TEQs. For example, a recent study on
HAHs in a human milk sample (2 weeks
after birth) in the Netherlands showed
that TEQ values for PCDDs/PCDFs and
PCBs were 30.2 and 35.5 ppt (fat weight
basis), respectively (68).

The major problems associated with the
TEF approach for HAHs is primarily asso-
ciated with nonadditive antagonistic inter-
actions between AhR agonists (PCDDs/
PCDFs and PCBs) and PCB congeners that
exhibit response and cell/species-specific
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Table 3. Examples of antagonistic interactions of halogenated aromatic hydrocarbons: inhibition of TCDD or
3,3',4,4',5-pentaCB-induced responses.

Antagonists

1,3,6,8-TetraCDF; 2,4,6,8-tetraCDF; Aroclor 1254
2,2',4,4',5',6-HexaCB
2,2',5,5'-TetraCB
Aroclors 1232, 1242, 1248, 1254, and 1260;
reconstituted PCB mixtures; 1,3,6,8-tetraCDF,
2,3,3',4,4',5-HexaCB; 2,3,3',4,5,5'-hexaCB;
2,3,3',4,5'-PentaCB; 2,3,4,4',5,6-hexaCB;
2,2',4,4',5,6'-HexaCB; 2,2',4,4',6,6'-hexaCB;
2,2',4,4',5,5'-HexaCB

Response, animal cell

AHH/EROD activities, H411E cells
EROD activity, chick embryo hepatocytes
Luciferase activity, mouse and rat cell lines
Splenic plaque-forming cell response to sheep red
blood cells or trinitrophenyl-lipopolysaccharide,
mouse strains

2,2',4,4',5,5'-hexaCB Serum IgM units, mice
Aroclor 1254; 2,2',4,4',5,5'-hexaCB; 2,2',5,5'-tetraCB Fetal cleft palate and hydronephrosis, mice
2,2',4,4',5,5'-HexaCB Chick embryotoxicity, malformations, edema,

liver lesions

Abbreviations: AHH, aryl hydrocarbon hydroxylase; EROD, ethoxyresorufin O-deethylase. Data from multiple
studies (69-84).

antagonistic activity (69-84) (Table 3).
Research in our laboratory has clearly
demonstrated that several PCB congeners
and some commercial mixtures exhibit
AhR antagonist activity. For example,
2,2',4,4',5,5'-hexaCB (PCB 153), a major
persistent congener in environmental sam-
ples, inhibits the following TCDD or
3,3',4,4',5-pentachlorobiphenyl-induced
responses: induction of ethoxyresorufin
O-deethylase activity in chick embryo
hepatocytes; inhibition of the plaque-form-
ing cell response to sheep red blood cells in
mice; inhibition of the plaque-forming cell
response to trinitrophenyl lipopolysaccha-
ride in mice; inhibition of serum 1gM units
in mice; induction of fetal cleft palate in
mice; induction of chick embryo malfor-
mations; induction of chick embryo
edema; induction of chick embryo liver
lesions; and induction of fetal hydro-
nephrosis in mice. These nonadditive
interactions, coupled with the unusually
broad range of TEF values observed for
some PCB congeners (e.g., 3,3',4,4'-
tetraCB), compromises the utility of the
TEF approach for hazard and risk assess-
ment of HAHs that contain PCBs.
Therefore, TEFs/TEQs for HAHs must be
used very selectively, and more research on
the utility, applications, and limitations of
this method should be conducted.

Toxic Equivalency Factor
Approach for Endocrine
Disruptors
It has been hypothesized that industrial-
derived estrogenic compounds (xeno-
estrogens) and possibly other naturally
occurring estrogens may be responsible
for a global decrease in male reproductive

capacity (e.g., sperm counts) and
increased incidence of breast cancer in
women (85,86). The validity of these
hypotheses has been questioned (1,87),
and resolution of the role of hormonally
active compounds in human disease
requires further study.

Like AhR agonists, hormonelike
compounds that act through specific cellu-
lar receptors should be good candidates for
using a TEF approach. Verdeal and Ryan
(88) previously compared human expo-
sures to man-made and naturally occurring
estrogenic compounds using a TEF/TEQ
approach and diethylstilbestrol equivalents.
The recent discovery of a second form of
the estrogen receptor (ER), ERp (89),
further complicates development of an
estrogen equivalent (EQ) approach for
estrogenic compounds. The specific
responses that are mediated via ERa or
ERN3 have not been delineated, and relative
potency factors for these responses by dif-
ferent structural classes of natural and
man-made estrogenic compounds have not
been determined. Several groups have
reported TEFs for both natural ligands for
the ER (e.g., flavonoids, lignans) and for
xenoestrogens, which are industrial-derived
chemicals and their by-products (90-93).
Although individual TEFs have been
assigned for each compound, most assay
systems indicate that with few exceptions,
both natural and xenoestrogens are > 1000
times less potent than 17p3-estradiol (E2). A
close inspection of the data obtained for
estrogenic compounds reveals that there
are many problems in development of a
TEF approach for these compounds and
some of these problems are similar to those
observed for HAHs and PAHs.

Pharmacokinetics, Metabolism,
and Serum Protein Binding
The in vivo activity of natural and
man-made endocrine active agents are sig-
nificantly influenced by their uptake, distri-
bution, and metabolism. For example,
many of the organochlorine xenoestrogens
exhibit low estrogenic potency based on
results of in vitro bioassays; however, these
compounds persist in the environment and
bioaccumulate. In contrast, many naturally
occurring estrogenic flavonoids in foods are
rapidly metabolized. For example, studies in
this laboratory (94) showed that narin-
genin, a flavonoid in grapefruit juice, exhib-
ited estrogenic activity in in vitro bioassays,
whereas at doses as high as 30 to 40 mg/ani-
mal naringenin, did not induce estrogen-
sensitive responses in the rat uterus. In
contrast, in female rats cotreated with E2
plus naringenin, there was significant inhibi-
tion of E2-induced uterine wet weight,
progesterone receptor levels, peroxidase
activity, and DNA synthesis. Bisphenol A
and p-octylphenol are two estrogenic pheno-
lic compounds that exhibit similar estro-
genic potency in a number of in vitro assays
(90). Vom Saal and co-workers (95)
recently reported that prenatal to early post-
natal exposure of mice to bisphenol A
resulted in increased prostate weight in
adult male offspring, whereas p-octylphenol
was inactive in this model. The increased
toxicity of bisphenol A compared to p-
octylphenol was associated with preferential
binding of the latter compound to serum
proteins and decreased uptake in target cells.
In contrast, research in this laboratory in the
immature female rat uterus indicated that
nonylphenol was significantly more potent
than bisphenol A, which exhibited weak ER
agonist and partial antiestrogenic activity.
Thus, the potencies of both compounds are
highly variable and response/species specific,
suggesting that a TEF approach would have
to incorporate factors that address some
measure of response specificity.

Interacdons ofEndocrine-Active
Compounds
Application of a TEF approach assumes
additive responses for compounds or mix-
tures that act through the same pathway at
submaximal doses. Arnold and co-workers
(96) initially reported that binary mixtures
of weakly estrogenic organochlorine pesti-
cides, including dieldrin, chlordane,
toxaphene, and endosulfan, exhibited > 90-
fold and > 160- to 1600-fold synergistic ER
binding and induction of reporter gene
activity in a yeast-based assay, respectively,
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compared to that observed for the com-
pounds alone. This type of nonadditive
interaction would negate a TEF/EQ
approach for hazard assessment of these
mixtures. However, studies from other lab-
oratories (97,98) using the same com-
pounds have not observed synergism. The
paper on synergism was recently withdrawn
(99); however, this does not preclude the
possibility of other synergistic interactions.

Interacdons between
Endocrine Response Pathways
The TEF/EQ approach is most applicable
for hazard and risk assessment of a specific
class of endocrine active compounds that
act through a common receptor. However,
as noted previously, there are a number of
factors that complicate this approach and
the problems are magnified with xenoen-
docrine active agents that act through
steroid hormone receptor or thyroid hor-
mone receptor-mediated pathways. For
example, assessment of xenoestrogen expo-
sure and potency (EQs) is complicated by
tissue-specific agonist/antagonist activities,
lack of data on intake and serum levels,
and their relative contribution to total
estrogen equivalents compared to much
higher intakes of natural estrogenic chemi-
cals in the diet (1). In addition, many
compounds may interact with more than
one hormone receptor and modulate
multiple endocrine response pathways.
For example, 2',3',4',5'-tetrachloro-2-
biphenylol binds to the ER and exhibits
ER-agonist activities (100,101). The same
compound also binds to the androgen
receptor in a yeast-based assay but inhibits
dihydrotestosterone-induced reporter gene
activity in human Hep G2 liver cancer cells

transiently transfected with the human
androgen receptor and an androgen-
responsive construct (102). Although
2',3',4',5'-tetrachloro-4-biphenylol did
not bind the progesterone receptor, in a
progesterone-responsive yeast assay this
hydroxy-PCB inhibited progesterone
receptor-mediated transactivation (103).
These data illustrate how one endocrine-
active compound can modulate multiple
endocrine response pathways.

Another major problem for hazard
assessment of xenoestrogens is associated
with tissue-specific cross talk between dif-
ferent receptor-mediated pathways, which
can lead to significant modulation of estro-
gen-induced responses. It has been pointed
out that in human breast cancer cells, cross
talk between the ER- and AhR-signaling
pathway results in inhibition of estrogen-
induced responses (1). Although this inter-
action is likely to be cell specific, it is
possible that the estrogenic activity associ-
ated with xenoestrogens in the mammary
gland will be inhibited by both xeno AhR
and natural AhR agonists in the diet.
Research in this laboratory has also focused
on cross talk between the ER and other
receptors that bind natural dietary con-
stituents. Vitamin A, retinoids, phytol, and
phytanic acid are vitamins or plant degrada-
tion products and are also important
dietary constituents that act through the
retinoic acid and retinoic acid X receptors,
and there is cross talk between these recep-
tors and the ER. For example, all trans-
retinoic acid, 9-cis-retinoic acid, and phytol
inhibit estrogen-induced responses in breast
cancer cells, and any effects of xenoestro-
gens in these cells would be opposed by
retinoic acid and retinoic acid X receptor

ligands. The importance of this type of
counteractive cross talk in other tissues and
organs has not been determined. These are
only some examples of cross talk between
endocrine-signaling pathways that must be
considered in an overall risk assessment of
dietary exposure to xenoestrogens and other
xenoendocrine active compounds, as well as
natural compounds in food that act
through the same signaling pathways.

Summary
Humans and wildlife are exposed in the
diet to complex mixtures of natural and
man-made chemicals. Hazard and risk
assessment of these mixtures is a difficult
process and the TEF approach has been
utilized for several different classes of
chemicals, including HAHs (AhR ago-
nists), PAHs (carcinogens), and xeno-
estrogens (ER agonists). This review has
pointed out both the utility and problems
associated with the TEF approach for all
three classes of chemicals. For example,
although TEFs may be useful for regulat-
ing HAH emissions and cleanup levels,
application of this concept for determin-
ing dietary TEQ intakes is complicated by
the unknown contributions of naturally
occurring AhR agonists, which exhibit
both AhR agonist and antagonist activities
(2). Moreover, the issue of cross talk
between multiple endocrine pathways
would further compromise the validity of
the TEF approach when applied to dietary
intakes of different classes of man-made
and natural chemicals. Based on these
uncertainties, the TEF approach should be
used for limited applications and only
after validation in animal models.

REFERENCES AND NOTES

1. Safe S. Environmental and dietary estrogens and human health: is
there a problem? Environ Health Perspect 103:346-351 (1995).

2. Safe S. Development, validation and problems with the TEF
approach for risk assessment of dioxins and related compounds.
J Anim Sci 76:134-141 (1998).

3. Silkworth JB, Brown JF Jr. Evaluating the impact of exposure
to environmental contaminants on human health. Clin Chem
42:1345-1349 (1996).

4. Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are
mutagens: a simple test system combining liver homogenates
for activation and bacteria for detection. Proc Natl Acad Sci
USA 70:2281-2285 (1973).

5. McCann J, Choi E, Yamasaki E, Ames BN. Detection of car-
cinogens as mutagens in the Salmonellamicrosome test: assay of
300 chemicals. Proc Natl Acad Sci USA 72:5135-5139 (1975).

6. Nagao M, Ushijima T, Wakabayashi K, Ochiai M, Kushida H,
Sugimura T, Hasegawa R, Shirai T, Ito N. Dietary carcinogens
and mammary carcinogenesis. Induction of rat mammary carci-

nomas by administration of heterocyclic amines in cooked
foods. Cancer 74:1063-1069 (1994).

7. Ames BN. Mutagenesis and carcinogenesis: endogenous and
exogenous factors. Environ Mol Mutagen 14(Suppf 16):66-77
(1989).

8. Ames BN, Profet M, Gold LS. Nature's chemicals and syn-
thetic chemicals: comparative toxicology. Proc Natl Acad Sci
USA 87:7782-7786 (1990).

9. Talalay P. Mechanisms of induction of enzymes that protect
against chemical carcinogenesis. Adv Enzyme Regul
28:237-250 (1989).

10. Barch DH, Rundhaugen LM, Pillay NS. Ellagic acid induces
transcription of the rat glutathione S-transferase-Ya gene.
Carcinogenesis 16:665-668 (1995).

11. Siess MH, Leclerc J, Canivenc-Lavier MC, Rat P, Suschetet M.
Heterogenous effects of natural flavonoids on monooxygenase
activities in human and rat liver microsomes. Toxicol Appl
Pharmacol 130:73-78 (1995).

Environmental Health Perspectives * Vol 106, Supplement 4 * August 1998 1055



S.H. SAFE

12. Hewitt WR, Brown EM, Plaa GL. Relationship between the
carbon skeleton length of ketonic solvents and potentiation of
chloroform-induced hepatotoxicity in rats. Toxicol Lett
16:297-304 (1983).

13. Cowlen MS, Hewitt WR, Schroeder F. Mechanisms in 2-hexa-
none potentiation of chloroform hepatotoxicity. Toxicol Lett
22:293-299 (1984).

14. NATO/CCMS. Scientific Basis for the Development of
International Toxicity Equivalency Factor (I-TEF), Method of
Risk Assessment for Risk Assessment for Complex Mixtures of
Dioxins and Related Compounds. Washington:North Atlantic
Treaty Organization/Committee on the Challenges of Modern
Society, 1988;178.

15. Nagao T, Golor G, Hagenmaier H, Neubert D. Teratogenic
potency of 2,3,4,7,8-pentachlorodibenzofuran and of three
mixtures of polychlorinated dibenzo-p-dioxins and dibenzofu-
rans in mice. Problems with risk assessment using TCDD
toxic-equivalency factors. Toxicology 57:591-597 (1993).

16. Nisbet ICT, LaGoy PK. Toxic equivalency factors (TEFs) for
polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol
Pharmacol 16:290-300 (1992).

17. Chu MML, Chen CW. Evaluation and estimation of potential
carcinogenic risks of polynuclear aromatic hydrocarbons.
Presented at the Symposium on Polycyclic Aromatic
Hydrocarbons in the Workplace 1984, Honolulu, HI.

18. Thorslund TW, Charnley G, Anderson EL. Unpublished data.
19. U.S. EPA. Health Effects Assessment of Polycyclic Aromatic

Hydrocarbons (PAHs). EPA 540/1-86-013. Cincinnati, OH:
U.S. Environmental Protection Agency Environmental Criteria
and Assessment Office, 1984.

20. Pfeiffer EH. Oncogenic interaction of carcinogenic and non-
carcinogenic polycyclic aromatic hydrocarbons. In: Air
Pollution and Cancer in Man. IARC Sci Publ 16 (Mohr U,
Schmahl D, Tomatis L, eds). Lyon:International Agency for
Cancer Research, 1977;67-77.

21. Schmahl D, Schmidt KG, Habs M. Syncarcinogenic action of
polycyclic aromatic hydrocarbons in automobile exhaust gas
condensates. In: Air Pollution and Cancer in Man. IARC Sci
Publ 16 (Mohr U, Schmahl D, Tomatis L, eds).
Lyon:International Agency for Cancer Research, 1977;53-59.

22. Warshawsky D, Barkley W, Bingham E. Factors affecting car-
cinogenic potential of mixtures. Fundam Appl Toxicol
20:376-382 (1993).

23. Chaloupka K, Harper N, Krishnan V, Santostefano M,
Rodriguez LV, Safe S. Synergistic activity of polynuclear aro-
matic hydrocarbon mixtures as aryl hydrocarbon (Ah) receptor
agonists. Chem Biol Interact 89:141-158 (1993).

24. Chaloupka K, Steinberg M, Santostefano M, Rodriguez LV,
Goldstein L, Safe S. Induction of Cypla-i and Cypla-2 gene
expression by a reconstituted mixture of polynuclear aromatic
hydrocarbons in B6C3Fl mice. Chem Biol Interact
96:207-221 (1995).

25. Rodriguez LV, Dunsford HA, Steinberg M, Chaloupka K, Zhu
L, Safe S, Womack JE, Goldstein LS. Carcinogenicity of
benzo[a]pyrene and manufactured gas plant residues in infant
mice. Carcinogenesis 18:127-135 (1997).

26. Weyand EH, Wu Y. Covalent binding of polycyclic aromatic
hydrocarbon components of manufactured gas plant residue to
mouse lung and forestomach DNA. Chem Res Toxicol
8:955-962 (1995).

27. Weyand EH, Chen YC, Wu Y, Koganti A, Dunsford HA,
Rodriguez LV. Differences in the tumorigenic activity of a pure
hydrocarbon and a complex mixture following ingestion:
benzo[a]pyrene vs manufactured gas plant residue. Chem Res
Toxicol 8:949-954 (1995).

28. Steinberg MA. Role of Polycyclic Aromatic Hydrocarbons in
Coal Tar-Induced Genotoxicity and Carcinogenicity. PhD
Thesis. College Station, TX:TexasA&M University, 1996.

29. McFarland VA, Clarke JU. Environmental occurrence, abun-
dance, and potential toxicity of polychlorinated biphenyl con-
geners: considerations for a congener-specific analysis. Environ
Health Perspect 81:225-239 (1989).

30. U.S. EPA. Health Assessment for 2,3,7,8-TCDD and Related
Compounds. External Review Draft. EPA/600/BP-92/00la-c.
Washington:U.S. Environmental Protection Agency, 1994.

31. Tanabe S, Iwata H, Tatsukawa R. Global contamination by
persistent organochiorines and their ecotoxicological impact on
marine mammals. Sci Total Environ 154:163-177 (1994).

32. Schecter A, Furst P, Furst C, Papke 0, Ball M, Ryan JJ, Hoang
DC, Le CD, Hoang TQ, Cuong HQ. Chlorinated dioxins and
dibenzofurans in human tissue from general populations: a
selective review. Environ Health Perspect 102(Suppl
1):159-171 (1994).

33. Poland A, Knutson JC. 2,3,7,8-Tetrachlorodibenzo-p-dioxin
and related halogenated aromatic hydrocarbons. Examinations
of the mechanism of toxicity. Annu Rev Pharmacol Toxicol
22:517-554 (1982).

34. Whitlock JP Jr. Mechanistic aspects of dioxin action. Chem
Res Toxicol 6:754-763 (1993).

35. Safe S. Modulation of gene expression and endocrine response
pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related
compounds. Pharmacol Ther 67:247-281 (1995).

36. Goldstein JA, Safe S. Mechanism of action and structure-activ-
ity relationships for the chlorinated dibenzo-p-dioxins and
related compounds. In: Halogenated Biphenyls, Naphthalenes,
Dibenzodioxins and Related Compounds (Kimbrough RD,
Jensen AA, eds). Amsterdam:EIsevier-North Holland,
1989;239-293.

37. Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins
(PCDDs), dibenzofurans (PCDFs) and related compounds:
environmental and mechanistic considerations which support
the development of toxic equivalency factors (TEFs). CRC Crit
Rev Toxicol 21:51-88 (1990).

38. Safe S. Comparative toxicology and mechanism of action of
polychlorinated dibenzo-p-dioxins and dibenzofurans. Annu
Rev Pharmacol Toxicol 26:371-399 (1986).

39. Safe S, Mason G, Sawyer T, Zacharewski T, Harris M, Yao C,
Keyes B, Farrell K, Holcomb M, Davis D, et al. Development
and validation of in vitro induction assays for toxic halogenated
mixtures. Toxicol Ind Health 5:757-775 (1989).

40. NATO/CCMS Method of Risk Assessment for Complex
Mixtures of Dioxins and Related Compounds. Rpt No 176.
Washington:NATO/CCMS, 1988.

41. North Atlantic Treaty Organization. Scientific Basis for the
Development of International Toxicity Equivalency Factor
(I-TEF), Method of Risk Assessment for Risk Assessment for
Complex Mixtures of Dioxins and Related Compounds. Rpt
No 178. Washington:NATO/CCMS, 1988.

42. Ahlborg UG, Hakansson H, Wxrn F, Hanberg A. Nordisk
dioxinriskbedbmning. Rapport fran en nordisk expertgrupp.
Miljorapport:Nordisk Ministerradet (1988).

43. Bellin JS, Barnes DG. Interim Procedures for Estimating Risks
Associated with Exposures to Mixtures of Chlorinated
Dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs).
Washington:U.S. Environmental Protection Agency, 1989.

44. Barnes DG, Kutz FW, Bottimore DP. Interim Procedures for
Estimating Risks Associated with Exposure to Mixtures of
Chlorinated Dibenzo-p-dioxins and -dibenzofurans and 1989
Update. EPA/625/3-89/016. Springfield, VA:National
Technical Information Service, 1989.

45. Ahlborg UG, Brouwer A, Fingerhut MA, Jacobson JL,
Jacobson SW, Kennedy SW, Kettrup AAF, Koeman JH, Poiger
H, Rappe C, et al. Impact of polychlorinated dibenzo-p-diox-
ins, dibenzofurans, an biphenyls on human and environmen-
tal health with special emphasis on application of the toxic
equivalence factor concept. Eur J Pharmacol 228:179-199
(1992).

46. Birnbaum LS, DeVito MJ. Use of toxic equivalency factors for
risk assessment for dioxins and related compounds. Toxicology
105:391-401 (1995).

47. Davis D, Safe S. Immunosuppressive activities of polychlori-
nated dibenzofuran congeners: quantitative structure-activity
relationships and interactive effects. Toxicol Appl Pharmacol
94:141-149 (1988).

1056 Environmental Health Perspectives * Vol 106, Supplement 4 a August 1998



TOXIC EQUIVALENCY FACTORS AND RISK ASSESSMENT

48. Harper N, Connor K, Safe S. Immunotoxic potencies of poly-
chlorinated biphenyl (PCB), dibenzofuran (PCDF) and
dibenzo-p-dioxin (PCDD) congeners in C57BL/6 and DBA/2
mice. Toxicology 80:217-227 (1993).

49. Harper N, Connor K, Steinberg M, Safe S. An ELISA specific
for antibodies to TNP-LPS detects alterations in serum
immunoglobulins and isotype switching in C57BL/6 and
DBA/2 mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin
and related compounds. Toxicology 92:155-167 (199'&).

50. Harper N, Steinberg M, Thomsen J, Safe S. Halogenated aro-
matic hydrocarbon-induced suppression of the plaque-forming
cell response in B6C3F1 splenocytes cultured with allogenic
mouse serum: Ah receptor structure-activity relationships.
Toxicology 99:199-206 (1995).

51. Eadon G, Kaminsky L, Silkworth J, Aldous K, Hilker D,
O'Keefe P, Smith R, Gierthy JF, Hawley J, Kim N, et al.
Calculation of 2,3,7,8-TCDD equivalent concentrations of
complex environmental contaminant mixtures. Environ Health
Perspect 70:221-227 (1986).

52. Stahl BU, Kettrup A, Rozman K. Comparative toxicity of four
chlorinated dibenzo-p-dioxins (CDDs) and their mixture. Part
I: Acute toxicity and toxic equivalency factors (TEFs). Arch
Toxicol 66:471-477 (1992).

53. Sawyer TW, Vatcher AD, Safe S. Comparative aryl hydrocar-
bon hydroxylase induction activities of commercial PCBs in
Wistar rats and rat hepatoma H-4-II E cells in culture.
Chemosphere 13:695-701 (1984).

54. Schrenk D, Lipp HP, Wiesmuller T, Hagenmaier H, Bock
KW. Assessment of biological activities of mixtures of polychlo-
rinated dibenzo-p-dioxins: comparison between defined mix-
tures and their constituents. Arch Toxicol 65:114-118 (1991).

55. Brown MM, Schneider UA, Petrulis JR, Bunce NJ. Additive
binding of polychlorinated biphenyls and 2,3,7,8-tetra-
chlorodibenzo-p-dioxin to the murine hepatic Ah receptor.
Toxicol Appl Pharmacol 129:243-251 (1994).

56. Schmitz HJ, Hagenmaier A, Hagenmaier HP, Bock KW,
Schrenk D. Potency of mixtures of polychlorinated biphenyls
as inducers of dioxin receptor-regulated CYPIA activity in rat
hepatocytes and H4IIE cefls. Toxicology 99:47-54 (1995).

57. Gierthy JF, Crane D, Frenkel GD. Application of an in vitro
keratinization assay to extracts of soot from a fire in a polychlo-
rinated biphenyl-containing transformer. Fundam Appl
Toxicol 4:1036-1041 (1984).

58. Silkworth J, McMartin D, DeCaprio A, Rej R, O'Keefe P,
Kaminsky L. Acute toxicity in guinea pigs and rabbits of soot
from a polychlorinated biphenyl-containing transformer fire.
Toxicol Appl Pharmacol 65:425-439 (1982).

59. Silkworth JB, Cutler DS, Sack G. Immunotoxicity of 2,3,7,8-
tetrachlorodibenzo-p-dioxin in a complex environmental mix-
ture from the Love Canal. Fundam AppI Toxicol 12:303-312
(1989).

60. Silkworth JB, Cutler DS, Antrim L, Houston D, Tumasonis C,
Kaminsky LS. Teratology of 2,3,7,8-tetrachlorodibenzo-p-
dioxin in a complex environmental mixture from the Love
Canal. Fundam Appl Toxicol 13:1-15 (1989).

61. Pohjanvirta R, Unkila M, Linden J, Tuomisto JT, Tuomisto J.
Toxic equivalency factors do not predict the acute toxicities of
dioxins in rats. Eur J Pharmacol 293:341-353 (1995).

62. Safe S. Polychlorinated biphenyls (PCBs) and polybrominated
biphenyls(PBBs): biochemistry, toxicology and mechanism of
action. CRC Crit Rev Toxicol 12:319-395 (1984).

63. Safe S. Polychlorinated biphenyls (PCBs): environmental
impact, biochemical and toxic responses, and implications for
risk assessment. CRC Crit Rev Toxicol 24:87-149 (1994).

64. Kannan N, Tanabe S, Tatsukawa R. Potentially hazardous
residues of non-ortho chlorine substituted coplanar PCBs in
human adipose tissue. Arch Environ Health 43:11-14 (1988).

65. Kannan N, Tanabe S, Tatsukawa R. Toxic potential of non-
ortho and mono-ortho coplanar PCBs in commercial PCB
preparations: 2,3,7,8-T4CDD toxicity equivalence factors
approach. Bull Environ Contam Toxicol 41:267-276 (1988).

66. Sawyer T, Safe S. PCB isomers and congeners: induction of

aryl hydrocarbon hydroxylase and ethoxyresorufin Odeethylase
enzyme activities in rat hepatoma cells. Toxicol Lett 13:87-94
(1982).

67. Ahlborg UG, Becking GC, Birnbaum LS, Brouwer A, Derks
HJGM, Feeley M, Golor G, Hanberg A, Larsen JC, Liem
AKD, et al. Toxic equivalency factors for dioxin-like PCBs.
Chemosphere 28:1049-1067 (1994).

68. Koopman-Esseboom C, Huisman M, Weisglas-Kuperus N, van
der Paauw CG, Tuinstra LGMT, Boersma ER, Sauer PJJ. PCB
and dioxin levels in plasma and human milk of 418 Dutch
women and their infants. Predictive value ofPCB congener lev-
els in maternal plasma for fetal and infant's exposure to PCBs
and dioxins. Chemosphere 28:1721-1732 (1994).

69. Bannister R, Davis D, Zacharewski T, Tizard I, Safe S. Aroclor
1254 as a 2,3,7,8-tetrachlorodibenzo-p-dioxin antagonist:
effects on enzyme activity and immunotoxicity. Toxicology
46:29-42 (1987).

70. Haake JM, Safe S, Mayura K, Phillips TD. Aroclor 1254 as an
antagonist of the teratogenicity of 2,3,7,8-tetrachlorodibenzo-
p-dioxin. Toxicol Lett 38:299-306 (1987).

71. Biegel L, Harris M, Davis D, Rosengren R, Safe L, Safe S.
2,2 ,4,4',5,5'-Hexachlorobiphenyl as a 2,3,7,8-tetra-
chlorodibenzo-p-dioxin antagonist in C57BL/6J mice. Toxicol
Appl Pharmacol 97:561-571 (1989).

72. Davis D, Safe S. Dose-response immunotoxicities of commer-
cial polychlorinated biphenyls (PCBs) and their interaction
with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Lett
48:35-43 (1989).

73. Biegel L, Howie L, Safe S. Polychlorinated biphenyl (PCB)
congeners as 2,3,7,8-TCDD antagonists-teratogenicity studies.
Proceedings Dioxin '88 meeting, Umea, Sweden. Chemosphere
19:955-958 (1989).

74. Davis D, Safe S. Immunosuppressive activities of polychlori-
nated biphenyls in C57BL/6 mice: structure-activity relation-
ships as Ah receptor agonists and partial antagonists.
Toxicology 63:97-111 (1990).

75. Morrissey RE, Harris MW, Diliberto JJ, Birnbaum LS.
Limited PCB antagonism ofTCDD-induced malformations in
mice. Toxicol Lett 60:19-25 (1992).

76. Harper N, Connor K, Steinberg M, Safe S.
Immunosuppressive activity of polychlorinated biphenyl mix-
tures and congeners: non-additive (antagonistic) interactions.
Fundam Appl Toxicol 27:131-139 (1995).

77. Zhao F, Mayura K, Kocurek N, Edwards JF, Kubena LF, Safe
SH, Phillips TD. Inhibition of 3,3',4,4',5-pentachloro-
biphenyl-induced chicken embryotoxicity by 2,2',4,4',5,5'-
hexachlorobiphenyl. Fundam Appl Toxicol 35:1-8 (1997).

78. Zhao F, Mayura K, Harper N, Safe SH, Phillips TD.
Inhibition of pentachlorobiphenyl-induced fetal clet palate
and immunotoxicity in C57BL/6 mice by 2,2',4,4',5,5'-hexa-
chlorobiphenyl. Chemosphere 34:1605-1613 (1997).

79. Tysklind M, Bosveld ATC, Andersson P, Verhallen E, Sinnige
T, Seinen W, Rappe C, Van den Berg M. Inhibition of
ethoxyresorufin-O-deethylase (EROD) activity in mixtures of
2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated
biphenyls. Environ Sci Pollut Res 4:211-216 (1995).

80. Davis D, Safe S. Immunosuppressive activities of polychlori-
nated dibenzofuran congeners: quantitative structure-activity
relationships and interactive effects. Toxicol Appl Pharmacol
94:141-149 (1988).

81. Harris GE, Metcalfe TL, Metcalfe CD, Huestis SY.
Embryotoxicity of extracts from Lake Ontario rainbow trout
(Oncorhynchus mykiss) to Japanese medaka (Oryzias latipes).
Environ Toxicol Chem 13:1393-1403 (1995).

82. Keys B, Piskorska-Pliszczynska J, Safe S. Polychlorinated diben-
zofurans as 2,3,7,8-TCDD antagonists: in vitro inhibition of
monooxygenase enzyme induction. Toxicol Lett 31:151-158
(1986).

83. Bosveld ATC, Verhallen E, Seinen W, Van den Berg M.
Mixture interactions in the in vitro CYPlAI induction bioassay
using chicken embryo heptocytes. Organohalogen Compounds
25:309-312 (1995).

Environmental Health Perspectives * Vol 106, Supplement 4 * August 1998 1057



S.H. SAFE

84. Aarts JMMJG, Denison MS, Cox MA, Schalk MAC, Garrison
PM, Tullis K, De Haan LHJ, Brouwer A. Species-specific
antagonism of Ah receptor action by 2,2',5,5'-tetrachloro- and
2,2',3,3',4,4'-hexachlorobiphenyl. Eur J Pharmacol
293:463-474 (1995).

85. Sharpe RM, Skakkebaek NF. Are oestrogens involved in falling
sperm counts and disorders of the male reproductive tract.
Lancet 341:1392-1395 (1993).

86. Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG,
Anton-Culver H. Medical hypothesis: xenoestrogens as pre-
ventable causes of breast cancer. Environ Health Perspect
101:372-377 (1993).

87. Ahlborg UG, Lipworth L, Titusernstoff L, Hsieh CC, Hanberg
A, Baron J, Tricehopoulos D, Adami HO. Organochlorine com-
pounds in relation to breast cancer, endometrial cancer, and
endometriosis: an assessment of the biological and epidemio-
logical evidence. Crit Rev Toxicol 25:463-531 (1995).

88. Verdeal K, Ryan DS. Naturally-occurring estrogens in plant
foodstuffs: a review. J Food Prot 42:577-583 (1979).

89. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S,
Gustafsson JA. Cloning of a novel receptor expressed in rat
prostate and ovary. Proc NatI Acad Sci USA 93:5925-5930
(1996).

90. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea
N, Serrano FO. The E-SCREEN assay as a tool to identify
estrogens: an update on estrogenic environmental pollutants.
Environ Health Perspect 103:113-122 (1995).

91. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A
variety of environmentally persistent chemicals, including some
phthalate plasticizers, are weakly estrogenic. Environ Health
Perspect 103:582-587 (1995).

92. Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier
CJ, McDonnell DP. Evaluation of chemicals with endocrine
modulating activity in a yeast-based steroid hormone receptor
gene transcription assay. Toxicol Appl Pharmacol 143:205-212
(1997).

93. Klotz DM, Beckman BS, Hill SM, McLachlan JA, Walters
MR, Arnold SF. Identification of environmental chemicals
with estrogenic activity using a combination of in vitro assays.
Environ Health Perspect 104:1084-1089 (1996).

94. Ruh MF, Zacharewski T, Connor K, Howell J, Chen I, Safe S.
Naringenin: a weakly estrogenic bioflavonoid which exhibits
antiestrogenic activity. Biochem Pharmacol 50:1485-1493
(1995).

95. Vom Saal FS, Timms BG, Montano MM, Thayer KA, Nagel
SC, Dhar MG, Ganjam VK, Parmigiani S, Welshons WV.
Prostate enlargement in mice due to fetal exposure to low doses
of estradiol or diethylstilbestrol and opposite effects at high
doses. Proc Natl Acad Sci USA 94:2056-2061 (1997).

96. Arnold SF, Klotz DM, Collins BM, Vonier PM, Guillette LJ
Jr, McLachlan JA. Synergistic activation of estrogen receptor
with combinations of environmental chemicals. Science
272:1489-1492 (1996).

97. Ramamoorthy K, Wang F, Chen I-C, Norris JD, McDonnell
DP, Gaido KW, Bocchinfuso WP, Korach KS, Safe S. Potency
of combined estrogenic pesticides. Science 275:405-406 (1997).

98. Ramamoorthy K, Wang F, Chen I-C, Norris JD, McDonnell
DP, Gaido KW, Bocchinfuso WP, Korach KS, Safe S.
Estrogenic activity of a dieldrin/toxaphene mixture in the
mouse uterus, MCF-7 human breast cancer cells and yeast-
based estrogen receptor assays: no apparent synergism.
Endocrinology 138:1520-1527 (1997).

99. McLachlan JA. Synergistic effect of environmental estrogens:
report withdrawn. Science 227:462-463 (1997).

100. Korach KS, Sarver P, Chae K, McLachlan JA, McKinney JD.
Estrogen receptor-binding activity of polychlorinated hydroxy-
biphenyls: conformationally restricted structural probes. Mol
Pharmacol 33:120-126 (1988).

101. Ramamoorthy K, Vyhlidal C, Wang F, Chen I-C, Safe S,
McDonnell DP, Leonard LS, Gaido KW. Additive estrogenic
activities of a binary mixture of 2',4',6'-trichloro- and
2',3',4',5'-tetrachloro-4-biphenylol. Toxicol Appl Pharmacol
147:93-100 (1997).

102. Safe S, Connor K, Ramamoorthy K, Gaido KW, Maness SC.
Human exposure to endocrine-active chemicals: hazard assess-
ment prob[ems. Regul Pharmacol Toxicol 26:52-58 (1997).

103. Jin L, Tran DQ, Ide CF, McLachlan JA, Arnold SF. Several
synthetic chemicals inhibit progesterone receptor-mediated
transactivation in yeast. Biochem Biophys Res Commun
233:139-146 (1997).

1058 Environmental Health Perspectives a Vol 106, Supplement 4 * August 1998


